A minimal-variable symplectic integrator on spheres
نویسندگان
چکیده
We construct a symplectic, globally defined, minimal-variable, equivariant integrator on products of 2-spheres. Examples of corresponding Hamiltonian systems, called spin systems, include the reduced free rigid body, the motion of point vortices on a sphere, and the classical Heisenberg spin chain, a spatial discretisation of the Landau–Lifshitz equation. The existence of such an integrator is remarkable, as the sphere is neither a vector space, nor a cotangent bundle, has no global coordinate chart, and its symplectic form is not even exact. Moreover, the formulation of the integrator is very simple, and resembles the geodesic midpoint method, although the latter is not symplectic.
منابع مشابه
Lagrangian spheres, symplectic surfaces and the symplectic mapping class group
Given a Lagrangian sphere in a symplectic 4-manifold (M,ω) with b+ = 1, we find embedded symplectic surfaces intersecting it minimally. When the Kodaira dimension κ of (M,ω) is −∞, this minimal intersection property turns out to be very powerful for both the uniqueness and existence problems of Lagrangian spheres. On the uniqueness side, for a symplectic rational manifold and any class which is...
متن کاملA ug 2 00 1 Symplectic genus , minimal genus and diffeomorphisms
In this paper, the symplectic genus for any 2−dimensional class in a 4−manifold admitting a symplectic structure is introduced, and its relation with the minimal genus is studied. It is used to describe which classes in rational and irrational ruled manifolds are realized by connected symplectic surfaces. In particular, we completely determine which classes with square at least −1 in such manif...
متن کاملSymplectic Conifold Transitions
We introduce a symplectic surgery in six dimensions which collapses Lagrangian three-spheres and replaces them by symplectic two-spheres. Under mirror symmetry it corresponds to an operation on complex 3-folds studied by Clemens, Friedman and Tian. We describe several examples which show that there are either many more Calabi-Yau manifolds (e.g., rigid ones) than previously thought or there exi...
متن کاملFukaya Categories and the Minimal Model Program: Creation
We prove that small blow-ups or reverse flips (in the sense of the minimal model program) of rational symplectic manifolds with trivial centers create Floer-non-trivial Lagrangian tori. We give examples of explicit mmp runnings and descriptions of Floer non-trivial tori in the case of toric manifolds, polygon spaces, and moduli spaces of flat bundles on punctured two-spheres (moduli of paraboli...
متن کاملFukaya Algebras and the Minimal Model Program
We prove that small blow-ups or reverse flips (in the sense of the minimal model program) of rational symplectic manifolds with point centers create Floer-non-trivial Lagrangian tori. We give examples of explicit mmp runnings and descriptions of Floer non-trivial tori in the case of toric manifolds, polygon spaces, and moduli spaces of flat bundles on punctured two-spheres (moduli of parabolic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 86 شماره
صفحات -
تاریخ انتشار 2017